

Comfort and Performance: Maximizing Both

AJ Tarpoff & Lily Edwards-Callaway

What is the goal?

- Everything has to go right
- Consistent high marbling isn't an accident
- Husbandry, Genetics, Nutrition

Animal welfare

Image modified by WAZA from Mellor and Beausoleil 2015

Freedom from hunger and thirst
 by ready access to fresh water and diet to maintain health and vigor

2. Freedom from discomfort

by providing an appropriate environment including shelter and a comfortable resting area

3. Freedom from pain, injury or disease by prevention or rapid diagnosis and treatment Biological functioning

4. Freedom to express normal behavior

by providing sufficient space, proper facilities and company of the animal's own kind

5. Freedom from fear and distress

by ensuring conditions and treatment which avoid mental suffering

(FAWC, 1979)

Affective states

PHYSICAL / FUNCTIONAL DOMAINS

NUTRITION
Positive Negative

ENVIRONMENT Positive Negative

PHYSICAL HEALTH
Positive Negative

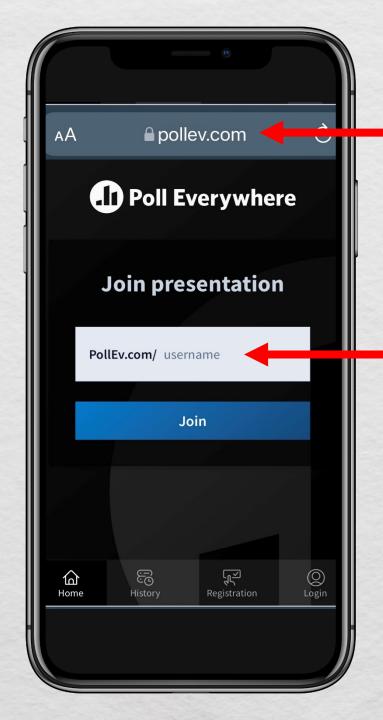
BEHAVIOUR
Positive Negative

MENTAL DOMAIN

NEGATIVE EXPERIENCES

POSITIVE EXPERIENCES

WELFARE STATUS


Natural living

(Fraser et al., 1997)

POLL EVERYWHERE INSTRUCTIONS

On Your Phone go to:

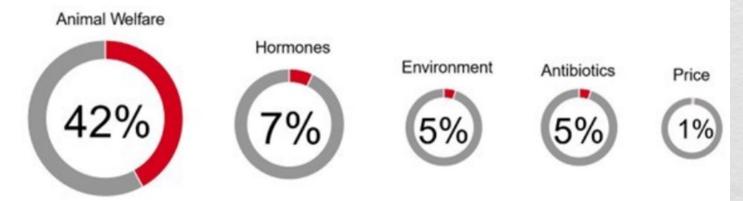
pollev.co

1

Enter the Username

CABBRAND

How do you maximize cattle comfort?



What do consumers think about animal welfare?

Unaided Concerns With Cattle Production

Unaided, animal welfare issues are top of mind when it comes to concerns of cattle production

Of the 51% who have a concern...

CR3a: What, if any, concerns do you have about how cattle are raised for food. Please be as specific as possible."

Figure 8. Consumer Concerns with Cattle Prouduction⁶

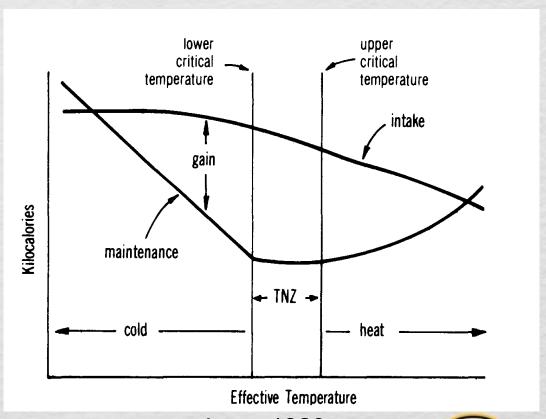
How differences in frames of reference change assessments of animal welfare

II. Ability to engage in natural behaviour (green) Daylight (1) Natural growth rate (2) Natural behaviour (3) Body care (4) Natural environment (5) Explorative behaviour (6) Social behaviour (7) Natural birth (8) Maternal behaviour (9) Sexual behaviour (10) Having fun (11) Foraging behaviour (12) Play behaviour (13) Genetic selection (14)

 Differences between farmers' and citizens' perceived importance of various welfare attributes

 Ability to engage in natural behavior showed the biggest gap between interest groups

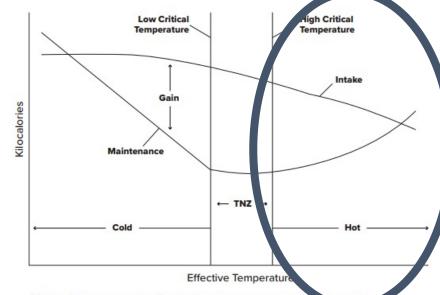
One area that impacts cattle performance & comfort......


Protecting livestock from heat stress as temperatures rise

Thermoneutral Zone (TNZ)

 Environment where the animal achieves maximal comfort and performance

Ames, 1980



Cattle Care Outside TNZ

- Steps taken to minimize environmental impacts
- Often seen as an added cost
- Or is it an investment in the animal to reach its genetic potential?

Environmental Stress-Hot

Effective of temperature on rate of feed intake, maintenance energy required and gain Source: Ames (1980)

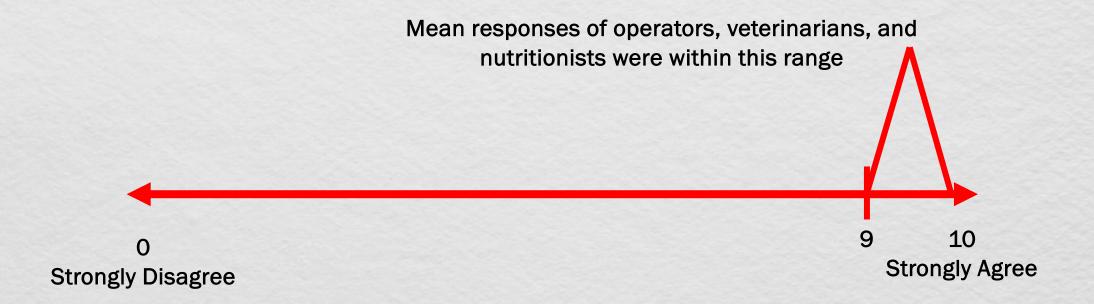
- Decrease Intake
- Increase Maintenance
- Potential for Mortality
- Decreased Fertility

 ^{~\$369} Million/year in losses to the Beef Industry (St. Pierre et al 2003 study)

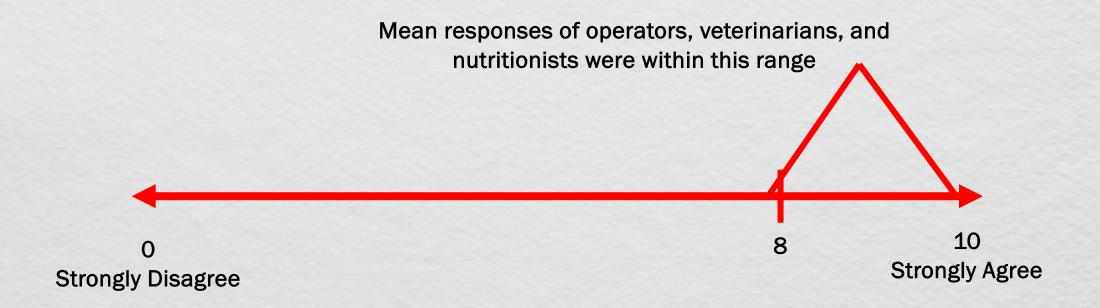
¹ Bond, T.E., W.N. Garrett, R.L. Givens and S.R. Morrison. 1970. Comparative effects of mud, wind and rain on beef cattle performance. Paper No. 70-406. Annu. Meeting A.S.A.E.

Animal Responses to Heat Stress

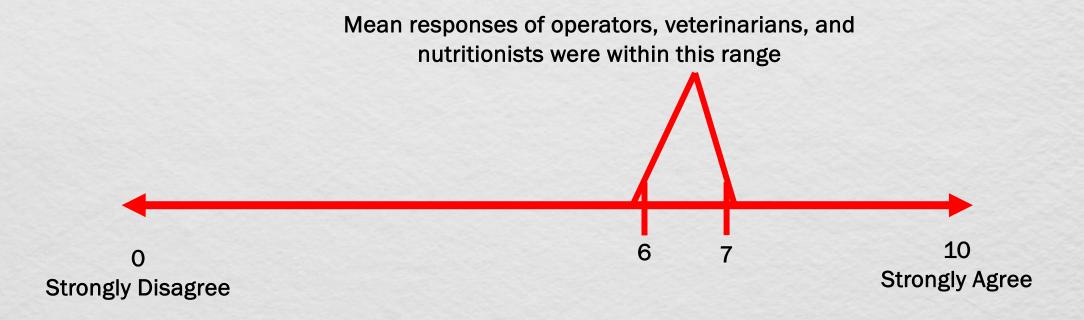
- Physiologic response
 - † body temperature
 - † respiration rate
 - † panting
 - † sweating (minimal)
- Behavioral response
 - J DMI
 - † standing
 - † water intake
 - †shade seeking


Factors of Heat Stress

- Temperature
- Humidity
- Wind speed
- Solar radiation (cloud cover)
- Cumulative Heat Load
 - Accumulate heat during day
 - Dissipate at night*****



Heat stress negatively impacts cattle performance



Heat stress negatively impacts cattle welfare

Heat stress negatively impacts carcass quality

Despite its importance, we do not know a lot about adoption or perception of heat stress mitigation strategies across the feedlot industry

Strategies generally focus on:

- 1) Adjusting feed
- 2) Water
- 3) Environment modifications
- 4) Handling changes

Brown-Brandl, 2018)

Recent survey on perceptions and use of heat stress mitigation strategies

The majority of respondents said they utilize or recommend heat mitigation strategies

Fewer had a written protocol describing implementation

What types of strategies did they use? modifying feeding strategies

Table 3. Summary of respondents' answers by role (operators, n = 22; veterinarians, n = 26; nutritionists, n = 8) when asked if they utilize or recommend the listed heat stress mitigation strategies.

Survey Question –

For extreme heat events do you (or recommend to):

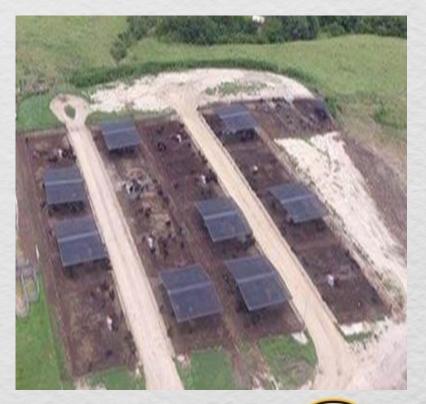
	Role (n, %)		
	Operator	Veterinarian	Nutritionist
modify feeding strategies during?			
Yes	12, 54.5%	20,76.9%	8, 100%
No	10, 45.5%	6, 23.1%	0, 0%
No answer	0, 0.0%	0, 0.0%	0, 0%
modify feeding strategies after?			
Yes	16, 72.7%	17, 65.4%	5, 62.5%
No	6, 27.3%	9, 34.6%	3, 37.5%
No answer	0, 0.0%	0, 0.0%	0, 0%

Ration Composition and Heat Production

- High fiber roughages
- low quality hay or straw

Mod

- Grains/highly digestible roughages
- silage



- Fats
- Oils

Materials and Methods

- Shade (SH)
 - · Randomly allocated
 - 12.19 × 12.19 m²
 - Covered 2 pens
 - Provided 7.2 ± 0.6 m² shade area per animal
- No Shade (NSH)

Dietary Treatment

LIM

ADLIB

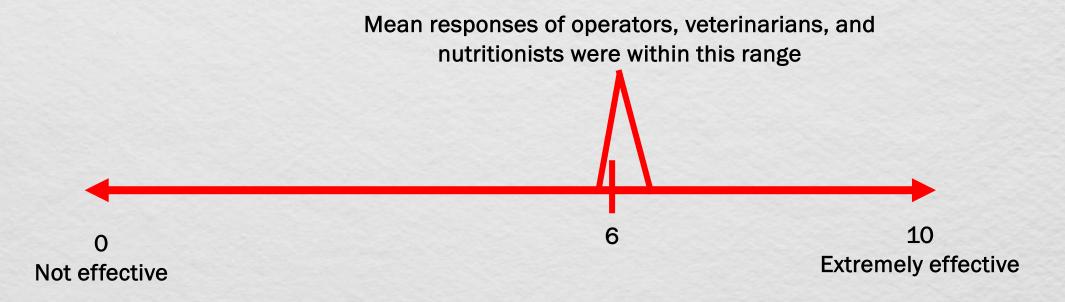
Receiving Experiment Conclusions

Limit-feeding

- ↑ ADG 4%
- ↑ G:F 42%
- ↓ Water usage 12%
- ↓ Mean panting score

Shade

- ↑ BW
- ↑ ADG 7%
- ↑ DMI 6%
- ↑ G:F 4%
- − ↓ Water usage 11%
- + Mean panting score



- National Cattlemen's Beef Association, a contractor of the beef checkoff
 - Funding
- Strobel Manufacturing
 - Gracious Ioan of 10 Super Shades to conduct this research
- Most importantly:
 - Mr. Zack Debord (Master of this project)

How effective as it relates to minimizing the effects of heat stress is changing feeding strategies

What types of strategies did they use? water

Pala (n. 0/1)

Table 3. Summary of respondents' answers by role (operators, n = 22; veterinarians, n = 26; nutritionists, n = 8) when asked if they utilize or recommend the listed heat stress mitigation strategies.

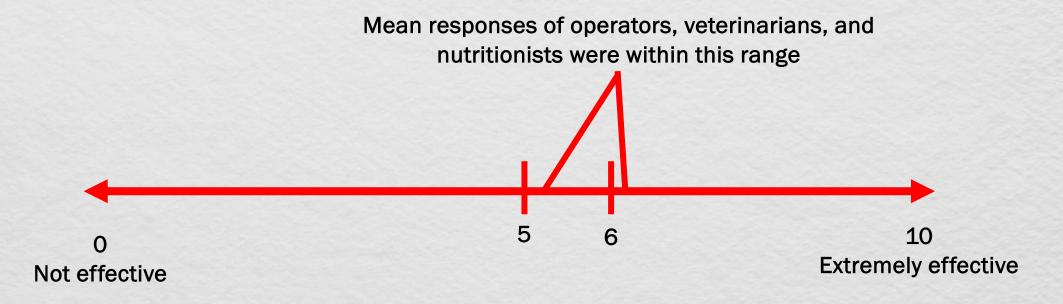
Survey Question -

For extreme heat events do you (or recommend to):

	Kole (n, %)		
	Operator	Veterinarian	Nutritionist
utilize a sprinkler system?	-		
Yes	5, 22.7%	16, 61.5%	6, 75%
No	16, 72.7%	10, 38.5%	2, 25%
No answer	1, 4.5%	0, 0.0%	0, 0%
water cattle down?			
Yes	5, 22.7%	12, 46.2%	5, 62.5%
No	16, 72.7%	13, 50%	3, 37.5%
No answer	1, 4.5%	1, 3.8%	0, 0%
provide bedding?			
Yes	10, 45.5%	22, 84.6%	6, 75%
No	11, 50%	4, 15.4%	2, 25%
No answer	1, 4.5%	0, 0.0%	0, 0%
			THIN

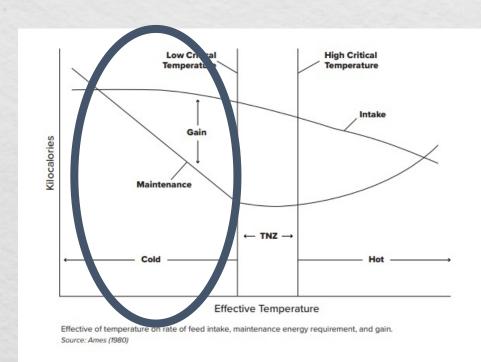
Sprinklers

- Can be useful if used correctly
- Wet the animal and pen/Don't mist
 - Droplet size matters (150 micron diameter)
- Very early in morning or overnight
 - Helps with overnight cooling before peak heat load
 - Cools pen floor
- Not for use in the middle of the day
 - Increases humidity in the pen microenvironment


Sprinkler's Effects?

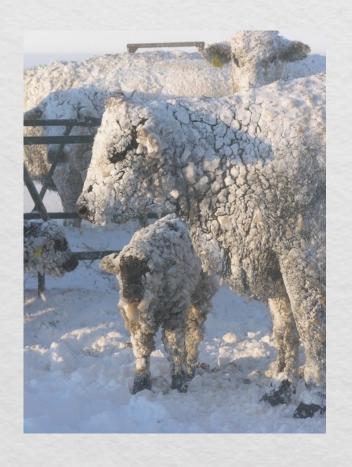
- Improved feed conversion
- Reduced panting scores
- Reduced pen floor temperatures

How effective as it relates to minimizing the effects of heat stress is using a sprinkler system

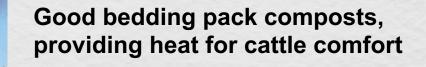

Bedding??

Treatment	Avg. Face Temp (°F)	Ambient Temp (°F)
Bare Floor	137	97
6" Manure	137	97
6" Straw	112	97

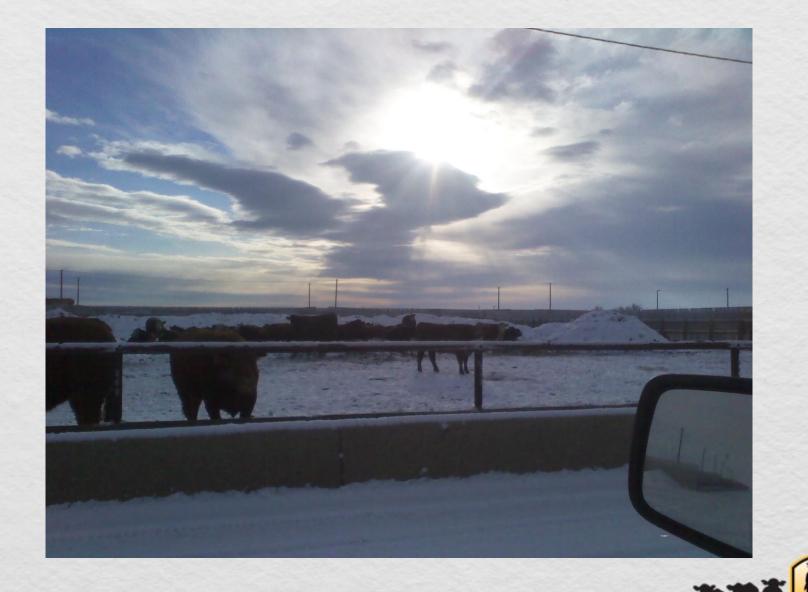
Environmental Stress-Cold



- Increases in energy requirement
- Storms, blizzards disrupt feeding behavior


Bond, T.E., W.N. Garrett, R.L. Givens and S.R. Morrison. 1970. Comparative effects of mud, wind and rain on beef cattle performance. Paper No. 70-406. Annu. Meeting A.S.A.E.

Got a Plan?


Bedding also improves pen conditions & minimizes manure tag on the hide

Impact of Bedding Cattle During Winter Months

- SDSU
- ~4lbs bedding/hd
- Increased DMI, G:F, ADG
- Decreased Maintenance
- 35 less days on feed



FOR U M

Animal welfare to improve performance

Winter time mud ADG losses

No mud	0%
Dewclaw deep	7%
Shin deep	14%
Below hock	21%
Hock deep	28%
Belly deep	35%

Mud

Mud effects well established

TABLE 2. CATTLE PERFORMANCE AND RESULTING CALCULATED ENERGY LOSS VALUES FOR DIFFERENT LOT CONDITIONS

	Concrete lots		Muddy lots		Sprinkled lots	
	1969	1970	1969	1970	1969 (4.83 mm/hr)	
Av. Daily Gain, kg*	1.44	1.29	0.94	1:17	1.21	
Av. Daily Feed Intake, kg*	10.2	8.5	8.6	8.0	10.2	
Av. Initial Wt., kg*	296	223	298	225	294	
Lv. Final Wt., kg* calculated Energy Loss,†	417	368	377	356	396	
kcal/day	16,193	14,031	16,194	13,792	18,337	

Data from Bond et al. (1970)

G. L. Riskowski, J. A. DeShazer MEMBER ASAE

1976

FIG. 1 Experimental setup—1] attachment of hoof to Instron unit. 2] mud box 3] attachment of mud box to Instron unit by means of the movable crosshead.

FEEDING QUALITY

FORUM

Calculations based from Teter et al. (1973)

What types of strategies did they use? handling changes

Table 3. Summary of respondents' answers by role (operators, n = 22; veterinarians, n = 26; nutritionists, n = 8) when asked if they utilize or recommend the listed heat stress mitigation strategies.

Survey Question -

For extreme heat events do you (or recommend to):

		Role (n, %)				
	Operator	Veterinarian	Nutritionist			
change work hours?						
Yes	16, 72.7%	26, 100%	8, 100%			
No	6,27.3%	0, 0.0%	0, 0.0%			
No answer	0, 0.0%	0, 0.0%	0,0.0%			
change processing/re-implanting/shipp	ping times?					
Yes	20, 91%	25, 96.2%	8, 100%			
No	1, 4.5%	1, 3.8%	0, 0.0%			
No answer	1, 4.5%	0, 0.0%	0, 0.0%			

What happens downstream when shipping times change?

Variable	n	Minimum	Mean	Maximum	SD
Transportation					
Distance Travelled (km)	604	2.7	155.8	1,332.5	209.6
Truck Waiting Time (minutes)	607	0.0	30.3	574.2	39.7
Lairage					
Lairage Duration (minutes)	572	4.0	200.7	1,071.5	195.0
Lairage Density (m ² /animal)	609	0.6	3.1	31.7	2.0
Environmental Characteristics					
THI ^{1, 2}	622	18.9	60.4	81.5	13.6
Precipitation ² (inches)	622	0.0	0.001	0.1	0.01
Wind Speed ² (mph)	622	0.0	11.2	35.0	6.3

¹THI score was calculated using the equation: THI = 0.8*T + RH*(T-14.4) + 46.4 where T is ambient or dry-bulb temperature (°C) and RH is relative humidity expressed as a proportion (LiveCorp and Meat and Livestock Australia, 2023). Temperature and humidity used to calculate THI, precipitation and wind speed were recorded using an online commercial weather service (Weather Underground, San Francisco, CA, USA).

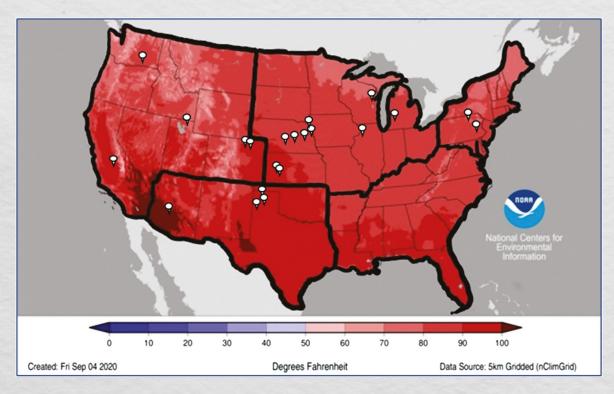
This project was supported by the Agriculture & Food Research Initiative Competitive Grant no. 2019-67015-29578 from the USDA National Institute of Food and Agriculture.

n = 637 slaughter lots

82,469 cattle!!

Do these pre-slaughter management factors impact cattle comfort?

Mobility impacts cattle comfort at the plant (and economics)


As time to unload increased, the odds of having impaired mobility increased.

Carcass quality impact

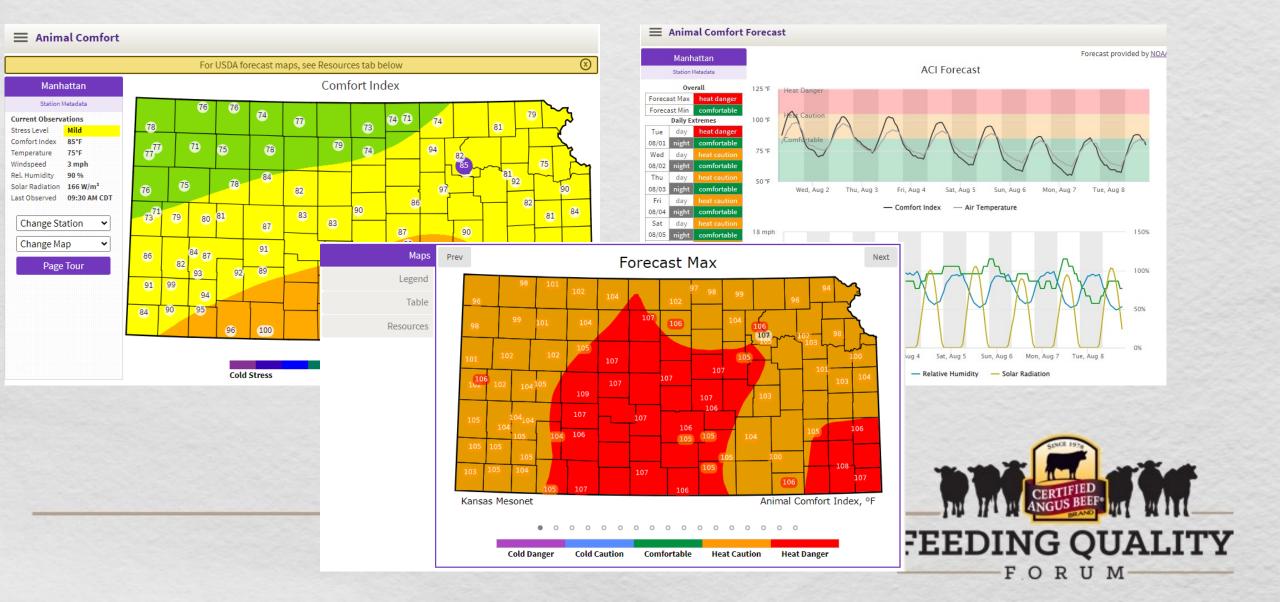
As lairage time increased, the estimated odds of a carcass being classified as a dark cutter increased

How do we maximize comfort & performance at the plant?

- Plants use at least one type of heat mitigation strategy – many use multiple
- Survey sample:
 - Most common (81%) use sprinklers or misters
 - Followed by shade (33%) and fans (19%)

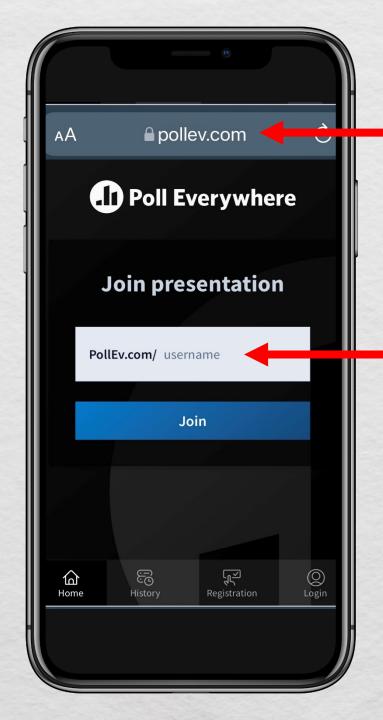
How do we maximize comfort & performance at the plant?

What resources would be helpful to you in regard to managing heat stress?


Monitoring Resources

"We need better tools to predict heat stress. To me it's more about how drastic the change is and how long cattle have had to acclimate."

"An easy to use heat stress dashboard that predicts heat stress (THI) events."



Kansas Mesonet

POLL EVERYWHERE INSTRUCTIONS

On Your Phone go to:

pollev.co

1

Enter the Username

CABBRAND

What resources would be beneficial to the industry to deal with heat/cold stress challenges?

Questions?

tarpoff@ksu.edu

lily.edwards-callaway@colostate.edu

